MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Model Answer: Summer- 2019

Subject: Strength of Materials

Sub. Code: 22306

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1		Attempt any Five of the following:		(10)
	a)	Define:		
		(i) Moment of Inertia		
		(ii) Radius of Gyration		
	Ans.			
		i) Moment of Inertia: Moment of Inertia of a body about any axis is		
		equal to the product of the area of the body and square of the distance		
		of its centroid from that axis.	1	
		OR		
		Moment of inertia of a body about any axis is defined as the sum of		2
		second moment of all elementary areas about that axis.		
		ii) Radius of Gyration: Radius of Gyration of a given area about any axis is that distance from the given axis at which the entire area is assumed to be concentrated without changing the M. I. about the given axis.	1	
	b)	State the relation between Young's modulus and bulk modulus.		
	Ans.	$E = 3K(1 - 2\mu)$	2	2
	Alis.	Where, $E = Young's Modulus$	2	_
		K= Bulk Modulus		
		μ= Poisson's Ratio		
		μ- roisson s Kano		

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	c) Ans.	Draw stress-strain diagram for mild-steel rod and show different limits on it.	1	2
	d) Ans.	Where, A = Limit of proportionality B = Elastic limit C = Upper yield point D = Lower yield point E = Ultimate load point F = Breaking point Define point of contra-flexure of a loaded beam with sketch. Point of Contra-flexure: It is the point in bending moment diagram where bending moment changes its sign from positive to negative and vice versa. At that point bending moment is equal to zero. This point is called as point of contra-flexure.	1	

Model Answer: Summer- 2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	Que.	(a) Beam (b) SFD (c) BMD	1	2
	e) Ans.	Define section modulus and neutral axis. Section Modulus: It is the ratio of M. I. of the section about the neutral axis and the distance of the most extreme fiber from the neutral axis. Neutral Axis: It is the axis shown in cross-section where bending stress is zero called as neutral axis. OR The intersection of the neutral layer with any normal cross section of a beam is called as neutral axis.	1	2
	f) Ans.	State the condition for no tension at the base of a column. If the load acting in the middle third area or core of the section, then the material experiences only compressive stress without producing tensile stress. i.e. Direct stress is equal to bending stress. Minimum stress is zero, such condition is said to be no tension condition. $\sigma_0 = \sigma_b$ i.e. $e \leq \frac{Z}{A}$	1	2
	g) Ans.	Define the core of a section. The centrally located portion of a within which the load must act so as to produce only compressive stress is called a core of the section.	2	2

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	Que	Attempt any <u>THREE</u> of the following:		(12)
	a)	A hollow square has inner dimensions $\mathbf{a} \times \mathbf{a}$ and outer dimensions		
		$2a \times 2a$. Find moment of inertia about the outer side.		
	Ans.	$x - 2a$ $A = \frac{y_1}{2a}$ $A = \frac{y_2}{2a}$ $A = \frac{x}{2} = a$	1	
		$I_{AB} = \left[I_{G} + Ah^{2}\right]_{1} - \left[I_{G} + Ah^{2}\right]_{2}$ $I_{AB} = \left[\frac{b^{4}}{12} + Ah^{2}\right]_{1} - \left[\frac{b^{4}}{12} + Ah^{2}\right]_{2}$	1	
		$I_{AB} = \left[\frac{(2a)^4}{12} + (2a \times 2a) \times a^2 \right]_1 - \left[\frac{(a)^4}{12} + (a \times a) \times a^2 \right]_2$ $I_{AB} = \left[\frac{16a^4}{12} + 4a^4 \right]_1 - \left[\frac{a^4}{12} + a^4 \right]_2$	1	4
		$I_{AB} = \left[\frac{64a^4}{12}\right]_1 - \left[\frac{13a^4}{12}\right]_2$ $I_{AB} = a^4 \left[\frac{64 - 13}{12}\right]$ $I_{AB} = a^4 \left[\frac{51}{12}\right]$		
		$I_{AB} = 4.25a^4$	1	
	b)	In a bi-axial stress system the stresses along the two directions are $\sigma_x=60~N/mm^2$ (tensile) and $\sigma_y=40~N/mm^2$ (compressive). Find the maximum strain. Take $E=200~kN/mm^2$ and $m=4$.		

Model Answer: Summer- 2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	Ans.	$e_{x} = \left(\frac{\sigma_{x}}{E}\right) - \left(\mu \frac{\sigma_{y}}{E}\right)$	1	
		$\mathbf{E} = (\mathbf{E}) (\mathbf{E})$		
		$= \frac{1}{F} \left(\sigma_{x} - \mu \times \sigma_{y} \right)$		
		L		
		$=\frac{1}{200\times10^3}\big(60 + 0.25\times40\big)$	1	4
		$e_x = 3.5 \times 10^{-4}$	1	4
		$e_{y} = \left(\frac{\sigma_{y}}{E}\right) - \left(\mu \frac{\sigma_{x}}{E}\right)$		
		$= \frac{1}{E} \left(\sigma_{y} - \mu \sigma_{x} \right)$		
		$=\frac{1}{200\times10^3}\left(-40-0.25\times60\right)$		
		200/10	1	
		$e_y = -2.75 \times 10^{-4}$		
		Maximum strain is $e_x=3.5\times10^{-4}$	1	
	c)	A simply supported beam of span 5 m carries two point loads of 5kN and 7 kN at 1.5 m and 3.5 m from the left hand support respectively. Draw S.F.D. and B.M.D. showing important values.		
		I. Support Reactions:		
	Ans.	$\sum \mathbf{M}_{\mathrm{A}} = 0$		
		$5 \times 1.5 + 7 \times 3.5 - R_B \times 5 = 0$		
		$5\times R_B = 32$	1	
		$R_{\rm B} = 6.4 \mathrm{kN}$	1	
		$\sum \mathrm{F_y} = 0$		
		$R_A + R_B - 5 + 7 = 0$		
		$R_A + R_B = 12$		
		$R_A = 5.6 \text{ kN}$		
		II. SF calculations SF at $A = +5.6 \text{ kN}$		
		$C_L = +5.6kN$	1	
		$C_R = 5.6 - 5 = 0.6 \text{kN}$		
		$D_{L} = +0.6kN$		
		$D_R = +0.6 - 7 = -6.4 \text{kN}$		
		$B_L = -6.4 \text{kN}$ $B = +6.4 - 6.4 = 0 \text{kN} \ (\because \text{ok})$		
		D - +0.4 - 0.4 - 0.11 (0K)		

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	c)	B.M. calculation:- B.M at A and B= 0 Since support A and B are simple. B.M at C = $5.6 \times 1.5 = 8.4$ kN-m B.M at D = $6.4 \times 1.5 = 9.6$ kN-m	1	4
		A C (c) BMD D B B C D D D D D D D D D D D D D D D D D	1	
	d) Ans.	A shaft is a rotating part of machine which transmits power from one point to other. When a force acts tangentially at a point on the surface of the shaft it rotates or twist. The twisting is due to the moment of a tangential force at the axis of rotation. The shaft is said to be in torsion. The study of behavior of the shaft in torsion without taking into account bending moment due to self-weight or other longitudinal forces known as pure torsion . Due to torsion shearing stress are induced in the material of the shaft. Every point in the material of the shaft is subjected to pure	3	4
		shear. Torsional Equation is $\frac{G\theta}{L} = \frac{T}{I_p} = \frac{\tau}{R}$	1	

Model Answer: Summer- 2019

Subject: Strength of Materials

Que No.	Sub. Que.	Model Answer	Marks	Total Marks
		Where, $T = \text{Torque or Turning moment (N-mm)}$ $I_P = I_{xx} + I_{yy} \text{ Polar momet of inertia of the shaft section (mm}^4)$ $G = \text{Modulus of rigidity of the shaft material (N/mm}^2)$ $\theta = \text{Angle through which the shaft is twisted due to torque i.e. angle of twist (radians)}$ $L = \text{Lenght of the shaft (mm)}$ $\tau = \text{Maximum shear stress induced at the outermost layer of the shaft (N/mm}^2)$ $R = \text{Radius of the shaft (mm)}$		
Q.3		Attempt any <u>THREE</u> of the following:		(12)
	a)	A cylindrical bar is 30mm in diameter and 2000mm long. The bar is subjected to uniform stress of 100 N/mm 2 in all directions. Calculate the modulus of rigidity and bulk modulus. If the modulus of elasticity is 1×10^5 N/mm 2 and Poisson's ratio is 0.2.		
	Ans.	Data: d=30mmØ, L=2000mm, σ =100 N/mm², E=1×10⁵ N/mm², μ =0.2 Find: K and G		
		$V = A \times L = \frac{\pi d^2}{4} \times L = \frac{\pi \times 30^2}{4} \times 2000 = 1413716.69 \text{mm}^3$		
		$\delta V = \frac{3\sigma}{E} (1 - 2\mu) V$		
		$\delta V = \frac{3 \times 100}{1 \times 10^5} \times (1 - 2 \times 0.2) \times 1413716.69 = 2544.69 \text{mm}^3$		
		$K = \frac{\sigma}{\left(\frac{\delta V}{V}\right)} = \frac{100}{\left(\frac{2544.69}{1413716.69}\right)} = 5.55 \times 10^4 \text{N/mm}^2$		
		OR	2	4
		$E = 3K(1 - 2\mu)$		
		$1 \times 10^5 = 3K(1 - 2 \times 0.2)$		
		$K = 5.55 \times 10^4 \text{ N/mm}^2$		
		$E = 2G(1+\mu)$		
		$1 \times 10^5 = 2G(1+0.2)$		
		$G = 4.16 \times 10^4 \text{ N/mm}^2$	2	

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
	b)	Find the bending stress induced in the steel flat 40mm wide and 5mm thick if it is required to bend into an arc of a circle of radius 2.5m. Also calculate the moment required to bend the flat. Take $E=2\times10^5$ MPa.		
	Ans.	Data: b=40mm, t=5mm, R =2.5m, E=2×10 ⁵ MPa. Find: σ_b and BM $I_{xx} = \frac{bd^3}{12} = \frac{40 \times 5^3}{12} = 416.67 \text{mm}^4$ $Y = \frac{t}{2} = \frac{5}{2} = 2.5 \text{mm}$	1	
		Bending stress equation:		
		$\frac{\sigma_{b}}{Y} = \frac{M}{I} = \frac{E}{R}$	1	4
		$\frac{\sigma_{b}}{Y} = \frac{E}{R}$ $\sigma_{b} = \frac{E}{R} \times Y = \frac{2 \times 10^{5}}{2500} \times 2.5 = 200 \text{N/mm}^{2}$	1	
		$\frac{M}{I} = \frac{E}{R}$ $M = \frac{E}{R} \times I = \frac{2 \times 10^5}{2500} \times 416.67 = 3.33 \times 10^4 \text{ N-mm}$	1	

Model Answer: Summer-2019

Subject: Strength of Materials

Que.	Sub.	Model Answer	Marks	Total Marks
Que. No. Q.3	Sub. Que. c) Ans.	Model Answer A cantilever beam of span 2.5m carries three point loads of 1kN, 2kN, and 3kN at 1m, 1.5m, and 2.5m from the fixed end. Draw S.F.D. and B.M.D. I. To calculate reaction at support A Σ Fy = 0 $R_A - 1 - 2 - 3 = 0$ $R_A = 6kN$ II. SF calculation: SF at $A = +6kN$ $C_L = +6kN$ $C_R = +6 \cdot 1 = 5kN$ $D_L = +5kN$ $D_R = +5 \cdot 2 = 3kN$ $B_L = +3kN$ $B = +3 \cdot 3 = 0$ (\therefore ok) III. BM calculation: BM at $B = 0$ \therefore B is free end. $D = -3 \times 1 = -3kN - m$ $C = -3 \times 1 \cdot 5 - 2 \times 0 \cdot 5 = -5 \cdot 5kN - m$ $A = -3 \times 2 \cdot 5 - 2 \times 1 \cdot 5 - 1 \times 1 = -11 \cdot 5kN - m$	Marks 1 1	Total Marks
		5.5 kN.m (c) B.M.D.		

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
	d)	A rectangular rod of size 50mm×100mm is bent into 'C' shape as shown in Fig.no. 1 and applied load of 40kN at point A. Calculate the resultant stresses developed at section x-x.		
		300 mm / 40kn X		
	Ans.	Data: b=100mm, d=50mm, P=40kN		
		$A = b \times d = 50 \times 100 = 5000 \text{mm}^2$		
		$I = \frac{b \times d^3}{12} = \frac{50 \times 100^3}{12} = 4.17 \times 10^6 \text{mm}^4$	1	
		$Y = \frac{b}{2} = \frac{100}{2} = 50 \text{mm}$		
		$M = P \times e = 40 \times 10^3 \times 300 = 12 \times 10^6 \text{ N-mm}$		
		$\sigma_{\rm o} = \frac{P}{A} = \frac{40 \times 10^3}{5000} = 8\text{N/mm}^2$	1	4
		$\sigma_{\rm b} = \frac{\rm M}{\rm I} \times Y = \frac{12 \times 10^6}{4.17 \times 10^6} \times 50 = 143.88 \mathrm{N/mm^2}$	1	
		$\sigma_{\text{max}} = \sigma_{\text{o}} + \sigma_{\text{b}}$ $\sigma_{\text{max}} = 8 + 143.88 = 151.88 \text{N/mm}^2$		
		$\sigma_{\min} = \sigma_{o} - \sigma_{b}$ $\sigma_{\min} = 8 - 143.88 = 135.88 \text{N/mm}^{2}$	1	

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4		Attempt any <u>THREE</u> of the following:		(12)
	a)	State and explain perpendicular axis theorem of moment of Inertia.		
	Ans.	Perpendicular axis theorem: It states "MI of a plane lamina about an axis perpendicular to the plane of lamina and passing through the centroid of the lamina is equal to the addition of the moments of inertia of the lamina about its centroidal axes".	1	
		Figure below shows the plane lamina laying in XY plane, OX and OY are mutually perpendicular and OZ is the axis perpendicular to plane XY of the lamina.	1	4
		A D D D D D D D D D D D D D D D D D D D	1	
		MI of lamina about OZ is		
		$I_z = \Sigma dA(r^2)$		
		$I_z = \sum dA(x^2 + y^2)$		
		$I_{z} = \Sigma dA(x^{2}) + \Sigma dA(y^{2})$		
		$I_z = I_x + I_y$	1	
	b)	A steel bar 50 mm \times 50 mm in section, 3m long is subjected to an axial pull of 20kN. Calculate the change in length and change in side of the bar. Take E = 200 GPa and Poission's ratio = 0.3.		
	Ans.	Data: b=50 mm, d=50 mm, L=3m, P=20 kN, E=200 GPa μ = 0.3 Calculate: δ L, δ b, and δ d		
		$\delta L = \frac{PL}{AE}$	1	
		$\delta L = \frac{20 \times 10^3 \times 3 \times 10^3}{10^3 \times 10^3 \times 10^3 \times 10^3}$		
		$\delta L = \frac{\delta L}{50 \times 50 \times 200 \times 10^3}$		
		$\delta L = 0.12 \text{mm}$	1	

Model Answer: Summer-2019

Subject: Strength of Materials

Que.	Sub.	N. 114	M	Total
No.	Que.	Model Answer	Marks	Marks
_	Que. b)	Model Answer $\mu = \frac{Lateral\ Strain}{Linear\ Strain}$ $\mu = \frac{\left(\frac{\delta b}{b}\right)}{\left(\frac{\delta L}{L}\right)}$ $0.3 = \frac{\left(\frac{\delta b}{50}\right)}{\left(\frac{0.12}{3000}\right)}$ $\delta b = 6 \times 10^{-4} \text{mm}$ $\mu = \frac{\left(\frac{\delta d}{d}\right)}{\left(\frac{\delta L}{L}\right)}$	Marks 1	
	c) Ans.	$\mu = \frac{\delta L}{L}$ $0.3 = \frac{\left(\frac{\delta d}{50}\right)}{\left(\frac{0.12}{3000}\right)}$ $\delta d = 6 \times 10^{-4} \text{mm}$ Two steel rods and one copper rod each of 20 mm in diameter together support a load of 20 kN as shown in Fig. No. 2. Find the stresses in the rod, Es = 210 GPa and Ec = 110 GPa.	1	
		Data: $ds = 20 \text{mm}\Phi$, $dc = 20 \text{mm}\Phi$, $Ls = 2 \text{m}$, $Lc = 1.5 \text{m}$, $P = 20 \text{kN}$, $Es = 210$ GPa and $Ec = 110$ GPa.		

Model Answer: Summer-2019

Subject: Strength of Materials

Que.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
Q.4	c)	$As = 2 \times \left(\frac{\pi d_s^2}{4}\right) = 2 \times \left(\frac{\pi \times 20^2}{4}\right) = 628.32 \text{mm}^2$ $Ac = \left(\frac{\pi d_c^2}{4}\right) = \left(\frac{\pi \times 20^2}{4}\right) = 314.16 \text{mm}^2$	1	
		$P = P_s + P_c$ $p = \sigma_s A_s + \sigma_c A_c$ $20 \times 10^3 = \sigma_s 628.32 + \sigma_c 314.16$	1	
		$\frac{\sigma_s L_s}{E_s} = \frac{\sigma_c L_c}{E_c}$ $\frac{\sigma_s \times 2000}{210 \times 10^3} = \frac{\sigma_c \times 1500}{110 \times 10^3}$ $\sigma_s = 1.43\sigma_c$	1	4
		$20 \times 10^{3} = (1.43\sigma_{c})628.32 + \sigma_{c}314.16$ $\sigma_{c} = 16.49 \text{ N/mm}^{2}$ $\sigma_{s} = 1.43\sigma_{c}$	1	
	d) Ans.	$\sigma_s = 1.43 \times 16.49 = 23.58 \text{N/mm}^2$ Calculate safe axial load in tension for a steel bar of cross-section 75 mm × 12 mm, if allowable maximum stress is 155 MPa. Data: b = 75 mm, d = 12 mm, $\sigma_{\text{allowable}} = 155 \text{ MPa}$ Calculate: P_{safe}		
		$A = b \times d = 75 \times 12 = 900 \text{ mm}^2$ $\sigma_{\text{allowable}} = \frac{P_{\text{safe}}}{A}$	1	
		$P_{\text{safe}} = \sigma_{\text{allowable}} \times A$ $P_{\text{safe}} = 155 \times 900 = 139500 \text{ N}$	1	4
		$P_{\text{safe}} = 139.5 \text{ kN}$	1	

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	e)	A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured extension on gauge length of 200 mm is 0.09 mm and the change in diameter is 0.0039 mm. Calculate the Poission's ratio and modulus of elasticity.		
	Ans.	Data: d=30 mm, L=200 mm, P=60 kN, δ_L =0.09 mm, δ_d = 0.0039 mm Calculate: μ and E		
		$A = \frac{\pi d^2}{4} = \frac{\pi \times 30^2}{4} = 706.858 \text{mm}^2$		
		$E = \frac{PL}{A\delta_L} = \frac{60 \times 10^3 \times 200}{706.858 \times 0.09} = 188628.08 \text{N/mm}^2$		
		$E = 1.89 \text{ N/mm}^2$	2	
		$\mu = \frac{\text{Lateral Strain}}{\text{Linear Strain}}$ (8) (0.0030)		
		$\mu = \frac{\left(\frac{\delta_d}{d}\right)}{\left(\frac{\delta_L}{L}\right)} = \frac{\left(\frac{0.0039}{30}\right)}{\left(\frac{0.09}{200}\right)} = 0.29$	2	4
		$\mu = 0.29$	2	4

Model Answer: Summer-2019

Subject: Strength of Materials

Que.	Sub.	Model Answer	Marks	Total
No. Q.5	Que.	Attempt any <u>TWO</u> of the following:		Marks (12)
Q.5	a)	A cantilever beam 4 m long carries a u.d.l. of 2 kN/m over 2 m		(12)
	ŕ	from free end and point load of 4 kN at free end. Draw SF and		
		BM diagrams.		
		i) Support Reaction Calculation:		
	Ans.			
		$\Sigma Fy = 0$		
		$R_A - 4 - (2x^2) = 0$		
		$R_A = 8 \text{ kN}$		
		ii) Shear Force Calculations:		
		$(F)_A = +8 \text{ kN}$		
		$(F_R)_A = +8 \text{ kN}$		
		$(F)_C = +8 \text{ kN}$	2	
		$(F)_B = +4 = 4 \text{ kN}$		
		$(F_R)_B = 4 - 4 = 0 \text{ kN}$		
		iii) Bending Moment Calculations:		
		$M_B = 0$ kN-m B is free end.		
		$M_C = -(4x2) - (2x2)x1 = -12 \text{ kN-m}$		
		$M_A = -(4x4) - (2x2)x3 = -28 \text{ kN-m}$	2	6
		2 kN/m		
		C B		
		A		
		2 m — 2 m — 4 m		
		$R_A = 8 \text{ kN}$ (a) Beam 8kN		
		⊕ 4kN		
			1	
		A (b) S.F.D. B	1	
		12kN-m ^{Curve}		
			1	
		28kN-m (c) B.M.D.		

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.5	b)	Select a suitable diameter for a solid circular shaft to transmit 200HP at 180 rpm. The allowable shear stress is 80 N/mm ² and the allowable angle of twist is 1° in a length of 3m. Take $C=0.82~x$ $10^5~N/mm^2$.		
	Ans.	Data: $P = 200$ HP, $N = 180$ rpm, $\tau = 80$ N/mm ² $\theta = 1^{\circ}$, $L = 3$ m $C = 0.82 \times 10^{5}$ N/mm ²		
		Find d		
		Case – I Diameter of shaft based on Shear Strength Criteria: $P = \left(\frac{2\pi NT}{4500}\right) HP$	1	
		$200 = \left(\frac{2\pi \times 180 \times T}{4500}\right)$		
		T = 795.775 kg-m T = 795.775 x 9.81 N-m T = 7806.5499 x 10 ³ N-mm	1	
		By using the relation $T = \frac{\pi}{16} \times \tau \times d^3$		
		$7806.5499 \times 10^{3} = \frac{\pi}{16} \times 80 \times d^{3}$ $\mathbf{d} = 79.21 \text{ mm}$	1	6
		Case – II Diameter of shaft based on Rigidity Criteria: By using the relation:		
		$\frac{T}{J} = \frac{C\theta}{L}$ $0.82 \times 10^5 \times \left(1^0 \times \frac{\pi}{L}\right)$	1	
		$\frac{\frac{1}{J} = \frac{30}{L}}{\frac{7806.5499 \times 10^{3}}{\frac{\pi}{32} d^{4}}} = \frac{0.82 \times 10^{5} \times \left(1^{0} \times \frac{\pi}{180}\right)}{3 \times 10^{3}}$		
		d = 113.63 mm	1	
		Choose the diameter of solid circular shaft equal to 114mm to satisfy the given conditions.	1	

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.5	c)	A diamond shaped pier with diagonals 3 m and 6 m is subjected to an eccentric load of 1500 kN at a distance of 1 m from centroid and on the longer diagonal. Calculate the maximum stress induced in the section.		
	Ans.	Data: $P = 1500 \text{ kN } e = 1 \text{ m}$ To find $\sigma_{max} = ?$		
		e=1m G B G B		
		Direct stress, $\sigma_0 = \frac{P}{A} = \frac{1500 \times 10^3}{2(\frac{1}{2} \times 3000 \times 3000)} = 0.1667 \text{ N/mm}^2$	1	
		Bending Moment, $M = Pxe = (1500 \times 10^3)x(1 \times 10^3) = 1.5 \times 10^9 \text{ N-mm}$	1	
		As the eccentricity is about Centroidal X-X axis, therefore $I_{xx} = I_{DB} = I_{base} = 2 \text{ x} \left(\frac{bh^3}{12}\right) = 2 \times \left(\frac{3000 \times 3000^3}{12}\right) = 13.5 \text{ x } 10^{12} \text{ mm}^4$ Distance of extreme layer (i.e. point A or C) from X-X axis – $Y = 6000/2 = 3000 \text{ mm}$	1	
		Section modulus: $Z_{xx} = \frac{I_{xx}}{Y} = \frac{13.5 \times 10^{12}}{3000} = 4.5 \times 10^{9} \text{ mm}^{3}$	1	6
		Bending Stress: $\sigma_{b} = \frac{M}{Z_{xx}} = \frac{1.5 \times 10^{9}}{4.5 \times 10^{9}} = 0.333 \text{ N/mm}^{2}$	1	
		Maximum Bending Stress: $\sigma_{max} = \sigma_0 + \sigma_b = 0.1667 + 0.333 = 0.5 \ N/mm^2 \ (Compressive)$	1	

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	a)	Attempt any <u>TWO</u> of the following:		(12)
	a)	A cantilever is 2 m long and is subjected to udl of 2 kN/m. The cross section of cantilever is tee section with flange 80 mm x 10 mm and web of 10 mm x 120 mm such that its total depth is 130 mm. The flange is at the top and web is vertical. Determine maximum tensile stress and compressive stress developed and their positions.		
	Ans.	Data: L = 2 m, $w = 2$ kN/m To find: $\sigma_{c(max)}$ and $\sigma_{t(max)}$		
		Neutral O 120 mm y _c = 86 mm y _c = 86 mm (b) Section (c) Bending stress distribution	1	
		$\mathbf{M}_{\text{max}} = \frac{wL^2}{2} = \frac{(2 \times 10^3) \times 2^2}{2} = 4 \times 10^3 N - m = 4 \times 10^6 N - mm$	1	
		$\overline{Y}_{base} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2} = \frac{(80 \times 10) \times 125 + (10 \times 120) \times 60}{(80 \times 10) + (10 \times 120)} = 86mm$		
		$I_{\text{NA}} = I_{\text{XX}} = \left[\left(\frac{bd^3}{12} \right) + Ah^2 \right]_1 + \left[\left(\frac{bd^3}{12} \right) + Ah^2 \right]_2$		
		$I_{XX} = \left[\left(\frac{80 \times 10^{3}}{12} \right) + (80 \times 10) \times (44 - 5)^{2} \right]_{1} + \left[\left(\frac{10 \times 120^{3}}{12} \right) + (10 \times 120) \times (86 - 60)^{2} \right]_{2}$		
		$I_{NA} = I_{XX} = 347.466 \times 10^4 \text{ mm}^4$	1	

Model Answer: Summer-2019

Subject: Strength of Materials

Que.	Sub.	Model Answer	Morks	Total
No.	Que.		Marks	Marks
Q.6	a)	$\overline{Y}_{base} = Y_{C} = 86 \text{ mm}$ $Y_{t} = 130 - 86 = 44 \text{ mm}$	1	6
		Maximum Compressive and Tensile Stress developed: $\frac{M_{\text{max}}}{I} = \frac{\sigma_C}{Y_C} = \frac{\sigma_t}{Y_t}$	1	
		$\frac{4 \times 10^6}{347.466 \times 10^4} = \frac{\sigma_C}{86} = \frac{\sigma_t}{44}$ $4 \times 10^6 \times 86$		
		$\sigma_C = \frac{4 \times 10^6 \times 86}{347.466 \times 10^4} = 99.002 N / mm^2 \text{ (At Bottom fiber)}$ $\sigma_t = \frac{4 \times 10^6 \times 44}{347.466 \times 10^4} = 50.652 N / mm^2 \text{ (At Top fiber)}$	1	
	b) (i)	347.466×10^4 A steel rod 800 mm long and 60 mm x 20 mm in cross section is subjected to an axial push of 89 kN. If the modulus of elasticity is 2.1 x 10^5 N/mm ² . Calculate the stress, strain and reduction in the length of rod.		
	Ans.	Data: L=800mm, b=60mm, d=20mm, P=89kN, E=2.1x10 ⁵ N/mm ² Find σ , e , δ_L		
		Stress induced in the steel rod: $\sigma = \frac{P}{A} = \frac{89 \times 10^3}{60 \times 20} = 74.17 \text{ N/mm}^2$ Strain induced in the steel rod: $E = \frac{\sigma}{e}$	1	
		2.1 x $10^5 = \frac{74.17}{e}$ $e = 3.53 \times 10^{-4}$ Reduction in the length:	1	
		$\delta_{L} = \frac{PL}{AE} = \frac{89 \times 10^{3} \times 800}{(60 \times 20) \times 2.1 \times 10^{5}}$	1	
		$\delta_L = 0.2835 \ mm$	1	

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.		Model Answer	Marks	Total Marks
Q.6	b)	Differentiate between linear a	nd lateral strain.		Wates
	(ii) Ans.	Linear Strain	Lateral Strain		
	Alis.	The change in dimensions	The change in dimensions		
		occurs in the direction of			
		applied load is called as	perpendicular to the line of	2	6
		Linear Strain.	action of applied load is		
		$e = \frac{\delta_L}{L}$	called as Lateral Strain.		
		L	$e = \frac{\delta_b}{b}$, $e = \frac{\delta_t}{t}$, $e = \frac{\delta_d}{d}$		
	c)	dimensions 120 mm x 120 mm	section square in size having outen with uniform thickness of materials force of 125 kN. Calculate the in the section.	1	
	Ans.	Data: $B = D = 120 \text{ mm}, t = 20 \text{ m}$	m, $F = 125 \text{ kN}$		
		Find τ _{max}			
		D = 120 mm N 20 mm 20 mm d = 80 mm A = 80 mm B = 120 mm Beam Section	n · · A		
		$b = d = 120 - 2t = 120 - 2 \times 20 = 120 = $	= 80 mm		
		Consider the area above the N.A	۸.		
		Shear stress (τ_1) at the bottom of	f flange by taking width (b=120mm)		
		$\tau_1 = \frac{FA\overline{Y}}{I\ b}$		1	
		$\overline{Y} = 60 - \frac{20}{2} = 50mm$			

Model Answer: Summer-2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	c)	$I = \frac{1}{12} (BD^3 - bd^3) = \frac{1}{12} (120 \times 120^3 - 80 \times 80^3) = 13.866 \times 10^6 mm^4$	1	
		$\therefore \tau_1 = \frac{(125 \times 10^3) \times (120 \times 20) \times 50}{13.866 \times 10^6 \times 120} = 9.015 \text{ N/mm}^2$	1	
		Shear stress (τ_2) at the bottom of flange by taking width $(b=20+20=40mm)$		
		$\therefore \tau_2 = \tau_1 \times \frac{120}{40} = 9.015 \times \frac{120}{40} 27.045 \text{ N/mm}^2$	1	6
		Width at N.A. = $20 + 20 = 40 \text{ mm}$		U
		Web area above the N.A.		
		$A = 2 \text{ x } (40 \text{ x} 20) = 1600 \text{ mm}^2$		
		C.G. of this area from N.A.		
		$\overline{Y} = \frac{40}{2} = 20mm$		
		:. Additional Shear Stress due to web area above the N.A. is given by		
		$\tau_{additional} = \frac{FA\overline{Y}}{I\ b} = \frac{(125 \times 10^3)(1600)(20)}{13.866 \times 10^6 \times 40} = 7.212N / mm^2$	1	
		$\tau_{\text{max}} = \tau_{\text{NA}} = \tau_2 + \tau_{\text{additional}}$		
		= 27.045 + 7.212		
		= 34.256 N/mm ²	1	